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Abstract

There is strong evidence for a role of environmental risk factors involved in susceptibility to

develop multiple keratinocyte cancers (mKCs), but whether genes are also involved in

mKCs susceptibility has not been thoroughly investigated. We investigated whether single

nucleotide polymorphisms (SNPs) are associated with susceptibility for mKCs. A genome-

wide association study (GWAS) of 1,666 cases with mKCs and 1,950 cases with single KC

(sKCs; controls) from Harvard cohorts (the Nurses’ Health Study [NHS], NHS II, and the

Health Professionals Follow-Up Study) and the Framingham Heart Study was carried-out

using over 8 million SNPs (stage-1). We sought to replicate the most significant statistical

associations (p-value� 5.5x10-6) in an independent cohort of 574 mKCs and 872 sKCs from

the Rotterdam Study. In the discovery stage, 40 SNPs with suggestive associations (p-

value�5.5x10-6) were identified, with eight independent SNPs tagging all 40 SNPs. The

most significant SNP was located at chromosome 9 (rs7468390; p-value = 3.92x10-7). In

stage-2, none of these SNPs replicated and only two of them were associated with mKCs in

the same direction in the combined meta-analysis. We tested the associations for 19 previ-

ously reported basal cell carcinoma-related SNPs (candidate gene association analysis),

and found that rs1805007 (MC1R locus) was significantly associated with risk of mKCs (p-

value = 2.80x10-4). Although the suggestive SNPs with susceptibility for mKCs were not
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replicated, we found that previously identified BCC variants may also be associated with

mKC, which the most significant association (rs1805007) located at the MC1R gene.

Introduction

Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) of the skin are known together

as keratinocyte carcinomas (KC), since they both originate from keratinocytes of the epidermal

layer of the skin, and share similar risk factors, treatments and prognosis [1]. KC is the most

common cancer in adults of northern-European descent and is becoming a major health bur-

den due to the high prevalence and increasing incidence in Western countries [2, 3]. A system-

atic review showed that patients with a primary BCC or SCC are likely to develop subsequent

KCs with proportions as high as 44% in USA and 32% in The Netherlands [4]. However, it was

recently shown that patients with only single KCs have a lower risk for subsequent KCs when

compared with patients with a history of two or more KCs suggesting a differential risk profile

of patients with single KCs than patients with a history of prior multiple KCs [3].

Environmental, tumour, and individual risk factors, including ultraviolet radiation (UVR),

pale hair and skin, and male gender have been associated with an increased risk for multiple

KCs (mKCs) [5–7]. There is also suggestive evidence for a genetic predisposition to mKCs,

since genetic mutations in PTCH1 [1, 8] and PTCH2 [9] cause multiple BCCs [10] in individu-

als with nevoid BCC syndrome (NBCCS), a Mendelian disease. In addition, over 19 loci have

been associated with sporadic BCC [11–13] and two with SCC. However, these previous stud-

ies included all prevalent non-melanoma skin cases and therefore it is not clear whether mKCs

patients share the same genetic susceptibility variants as these with single KC.

In a recent study we found that common variants associated with BCC did not predict sus-

ceptibility for mBCC [14]. Other studies assessing genetic susceptibility in patients with mKCs

are scarce. Here, we carried out a meta-analysis of GWAS on mKCs to investigate genetic sus-

ceptibility for mKCs comparing 1,241 mKCs to 2,822 single KCs (sKCs). We used patients

with single KC as controls to increase the chance of identifying variants associated with sus-

ceptibility for having multiple KCs.

Materials and Methods

Study population

The nurses’ health study (NHS), NHS II and the health professionals follow-up study

(HPFS)–harvard cohorts. Study participants were included from three ongoing longitudinal

cohorts: NHS, NHS II and HPFS. The NHS was established in 1976 when 121,701 married,

female registered nurses aged 30–55 in the US were enrolled using a mailed questionnaire

inquiring about their medical history and lifestyle practices. Between 1989 and 1990, blood

samples were collected from 32,826 cohort members. NHS II began in 1989 when 116,430

female nurses aged 25–42 completed a mailed questionnaire. Between 1996 and 1998, blood

samples were collected from 29,616 cohort members. The HPFS consisted of 51,529 male

health professionals who completed their baseline questionnaire in 1986. Between 1993 and

1994, blood samples were collected from 18,159 cohort members. Information on lifestyle fac-

tors and medical history was collected biennially by mailed questionnaire. The follow-up rate

exceeds 90% in each cohort. The study protocol was approved by the Institutional Review

Board of Brigham and Women’s Hospital and the Harvard School of Public Health.
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We combined data from several case-control studies nested within the cohorts for type 2

diabetes (NHS and HPFS), coronary heart disease (NHS and HPFS), breast cancer (NHS and

NHS II), colon cancer (NHS and HPFS), kidney stone (NHS, NHS II and HPFS), advanced

prostate cancer (HPFS), endometrial cancer (NHS), gout (NHS and HPFS), glaucoma (NHS

and HPFS), mammographic density (NHS), and pancreatic cancer (NHS and HPFS). The

description of the studies is presented elsewhere [13].

mKCs case ascertainment. Participants reported diagnoses of cancers biennially. Medical

records were reviewed to confirm the diagnoses. Medical records were not obtained for self-

reported cases of BCC, but previous studies showed high validity of BCC self-reports [15, 16].

Information on the cumulative number of KCs was collected in 2004 (NHS), 2005 (NHS II)

and 2008 (HPFS); details are presented elsewhere [5, 7]. A validation study among 200 cases

who reported 5–10 and�11 KC showed a confirmation rate of 92% [7]. All the participants

included in the analysis were Caucasians who reported at least one pathologically confirmed

diagnosis of SCC or self-reported BCC in the cohort follow-up. For this study, cases were

defined as individuals with more than one KC (mKCs) and controls were defined as those

with single KC (sKCs).

The framingham heart study. The Framingham Heart Study (FHS) is a community-

based prospective study that began in 1948 to characterize cardiovascular disease and its risk

factors. The Original Cohort was composed of 5,209 Framingham residents primarily of white

European-ancestry. In 1971, 5,124 offspring of the Original Cohort and their spouses were

recruited into the Offspring Cohort. In 2002, 4095 children of the offspring cohort were invited

to the Third Generation Cohort. The study design and participant descriptions of the three

cohorts have been published elsewhere [17–19].

mKCs case ascertainment. Participants have undergone routine research examinations every

two to six years. Cancer cases were identified at the research examinations or by medical history

updates for participants who did not attend an examination. Two independent reviewers exam-

ined the medical records of all cancer cases and used the World Health Organization ICD-O cod-

ing and in 2010 ICD-10 coding to classify all primary tumours. All skin cancer cases were verified

with pathology reports. FHS participants with GWAS genotype information and with patholog-

ically confirmed skin cancer (until December 31 2013, melanoma excluded) were included in the

current study. Participants with more than one KC were defined as cases and these with single

KCs were defined as controls.

The rotterdam study (RS). The RS is a prospective population-based follow-up study of

the determinants and prognosis of chronic diseases, including skin cancer, in the elderly [20].

The RS consists of a major cohort (RS-I) and two extensions (RS-II and RS-III). RS-I started in

1990 and included 7,983 participants living in the Ommoord district (Rotterdam, the Nether-

lands). RS-II began in 2000 and now includes 3,011 participants. RS-III was started in 2006

and now includes 3,932 participants. By the end of 2008, the RS comprised 14,926 subjects

aged 45 years or over. The RS consists predominantly (90%) of participants of North-European

ancestry. A detailed description of the design of the RS is presented elsewhere [20].The Medi-

cal Ethics Committee of the Erasmus Medical Center and the review board of the Dutch Min-

istry of Health, Welfare and Sports have ratified the RS. Written informed consent was

obtained from each participant.

mKCs case ascertainment. To identify histopathologically confirmed BCCs, SCCs and

melanomas, RS participants were linked with the nationwide registry of histo- and cytopathol-

ogy in the Netherlands (PALGA; up to 31st December 2013) [21]. The case definition for KC

has been described previously [14]. In the majority of reports extracted from PALGA it was

possible to distinguish between participants with single or subsequent tumours. If the diagno-

sis or the number of unique KC remained unclear, the medical files were searched by hand
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and a consensus decision was made. The number of KC was recorded separately for BCC and

SCC. Individuals with either a single BCC or SCC were considered as controls while multiple

BCC and/or SCC were taken as mKCs cases.

Genotyping and imputation

Details of DNA collection, genotyping and quality control for the Harvard cohorts [13, 22],

the FHS [23] and the RS [20] cohorts has been detailed elsewhere. A summary of the genotyp-

ing quality control for the all cohorts is presented in the supplementary file S1 Appendix.

Harvard GWAS. Genotyping was performed on three platforms: Affymetrix (n = 1230:

539 controls, 691 cases), Illumina HumanHap (n = 845: 363 controls, 482 cases), and Illumina

Omni Express (n = 645: 287 controls, 358 cases). The genotypes per platform were merged

from the different cohorts (NHS, NH II and HPFS) [13] and thus, had men and women. Based

on combined GWAS genotypes on each genotyping platform and the 1000 Genomes Project

ALL Phase I Integrated Release Version 3 Haplotypes (2010–11 data freeze, 2012-03-14 haplo-

types) as reference panel, we imputed the genotypes of markers in the 1000 Genomes Project

using MACHv.1.0.18.c [24]. Only SNPs with imputation Rsq> 0.95 and minor allele frequency

(MAF)>1% were included in meta-analysis.

FHS GWAS. Genotyping was conducted using the Affymetrix 500K mapping array and

the Affymetrix 50K gene-focused molecular imprinted polymer array. We imputed using

1000Genomes Phase I Version 3 as the reference panel using MACH-Minimac [24]. SNPs

with MAF�1% and imputation quality value <0.3 were excluded.

RS GWAS. Details of genotyping approach is presented elsewhere [20]. Briefly, cohorts

RS-I and RS-II were genotyped with the Infinium II HumanHap550K Genotyping BeadChip

version 3 (Illumina, San Diego, California USA) and the cohort RS-II was genotyped using the

Illumina Human 610 Quad Arrays. We imputed the RS-I, RS-II and RS-III cohorts separately,

using 1000Genomes (GIANT Phase I version 3) as the reference panel and using MACH-Mi-

nimac with default parameters [24]. Next, markers with a MAF�1% and an imputation qual-

ity score (Rsq) < 0.3 were removed.

Statistical analysis

Stage-1; discovery phase. The discovery samples (stage-1) consisted of the Harvard

cohorts (NHS, NHS II, and HPFS) and the FHS cohort. The association analyses between the

SNPs and mKCs were performed using an additive logistic regression model on subjects with

more than one KC as cases and subjects with only one KC as controls. As the Harvard cohorts

were genotyped on three different platforms [13], GWAS analyses were conducted for each

platform, adjusting for age at first diagnosis of SCC/BCC, sex and four principal components

of genetic variance (PCAs) using ProbABEL [25]. The association for each SNP from three

platforms for the Harvard cohorts was combined in an inverse-variance-weighted meta-analy-

sis using METAL [26].

The FHS GWAS was carried out using an additive generalized estimation equation (GEE)

model [27] that takes into account the pedigree structure of the FHS study. The model was

adjusted for age at first diagnosis, sex and four PCAs. These analysis were performed using the

R package [27].

The quality control of the GWAS summary statistics from Harvard cohorts and the FHS

GWAS summary statistics was performed using the EasyQC software [28]. After quality control

there were 9,001,799 markers from Harvard cohorts and 8,246,930 markers from FHS. The

cleaned files of both datasets (Harvard cohorts and FHS) were meta-analysed using the inverse

variance approach implemented in METAL[26]. SNP heterogeneity was tested using I2 and
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Cochran’s Q, both of which are implemented in METAL. The inflation factor lambda (genomic

control) was close to 1.0 (λ = 1.08) and therefore no further adjustments for genomic control

were done The SNPs that showed significant associations with mKCs (p-value� 5.5x10-6) were

selected for stage-2 phase.

Stage-2 phase; replication and joint meta-analysis. The stage-2 analysis of the top SNPs

identified in the discovery phase was carried out in the RS cohort. A logistic regression with an

additive model to test for associations between SNPs and mKCs was implemented adjusting

for age at diagnosis, sex and four PCs. The significance of the association was tested using the

likelihood ratio test (LRT) with one degree of freedom. To correct for multiple testing, we cal-

culated the pair-wise linkage disequilibrium (LD; r2) between the top SNPs using SNAP [29]

and the p-values were adjusted by dividing the nominal p-value by the number of independent

tests (SNPs were considered independent with r2�0.6).

We also carried out a GWAS on the RS cohort as described previously [14] and used the

p-values from the LRT [25] of the three cohorts for a meta-analysis. The quality control of

the GWAS summary statistics per cohort was done with EasyQC [28]. After QC there were

7,898,815 markers. The cleaned files of the RS were then meta-analyzed with the FHS and

Harvard cohorts using the weighted Z-score method, implemented in METAL [26]. SNP

heterogeneity was tested using I2 and Cochran’s Q methods. The top SNPs were annotated

to genes using Ensembl (http://browser.1000genomes.org/index.html).

Results

The age and sex distribution of cases (mKCs) and controls (sKCs) for the stage-1 (discovery)

and stage-2 cohorts are presented in Table 1. The discovery cohorts consisted of 1,666 subjects

Table 1. Demographic characteristics of the population-based cohort.

Cohorts KC

ascertainment

Cases

(mKC)

Controls

(sKC)

Sex(%male

cases)

Sex(%male

controls)

Median agea cases

(IQR)b
Median agea controls

(IQR)

Stage 1

Harvardc* Self-report 1,531 1,189 38.3 28.5 66 (59–73) 64 (58–71)

NHS Self-report 920 817 0 0 64 (57–70) 66 (59–72)

NHS II Self-report 23 33 0 0 45 (40–52) 50 (46–54)

HPFS Self-report 588 339 100 100 67 (60–73) 69 (62–73)

FHS Pathology

records

135 761 60 50 66 (58–78) 66 (54–77)

Stage 2

RS

combined

Pathology

records

575 872 40 50 73 (66–81) 69 (72–77)

RS1 Pathology

records

345 542 43 52 78 (72–84) 74 (68–90)

RS2 Pathology

records

142 178 53 52 68 (62–72) 70 (66–76)

RS3 Pathology

records

88 152 39 36 57 (51–64) 60 (53–65)

FHS: Framingham Heart Study; mKC: multiple KCs; RS: Rotterdam Study; sKC: single KC.
a Median age at first diagnosis
b IQR: Inter-quantile range
c Combined; dataset from the combined NHS, NHS II and HPFS cohorts.

*GWAS analysis for the Harvard cohorts were performed per GWAS platforms (see Materials and Methods) not per cohort.

doi:10.1371/journal.pone.0169873.t001
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with mKCs and 1,950 subjects with sKCs. The ascertainment of KC was done primarily using

self-reports in the Harvard cohorts. There were differences in the proportion of males in the

cohorts, since the NHS and NHS II are women’s cohorts and HPFS is men’s cohort. We also

observed that cases were older than controls.

In the discovery stage, suggestive genome-wide associations (p-value�5.5x10-6) were iden-

tified for 40 SNPs (Fig 1 and S1 Table). Due to the strong LD (r2>0.6) among these 40 SNPs

(eight SNPs tagged 32 of the top SNPs), only eight of them were considered independent sig-

nals (S1 Table). The most significant hit was an intergenic SNP on the short arm of chromo-

some 9 (rs7468390, p-value = 3.92x10-7), with an OR (95% CI) of 0.73 (0.64–0.82) for the C

allele (Table 2). This is a common SNP in strong LD with 13 other SNPs with suggestive associ-

ations (S1 Table and S1 Fig). The region of LD of rs7468390 spans approximately 13 kb. Of the

40 SNPs with suggestive associations, 29 were intergenic, three mapped to non-coding RNA,

four within regulatory regions and four to the NCKAP5 gene (S1 Table).

For the stage-2, we tested for associations between the 40 top SNPs from the stage-1 and

mKC in an independent sample of 574 mKCs and 872 sKCs from the RS using an adjusted p-

value of 0.006 (corresponding to a p-value of 0.05 divided by eight independent SNPs/tests.

None of the SNPs replicated at this threshold (S2 Table). A combined analysis of both the

stage-1 and stage-2 datasets showed suggestive associations for the 40 significant SNPs, but

none reached genome-wide significance, and there was significant heterogeneity in the esti-

mates, most likely due to the different direction of the effects in the RS [30] (Table 2 and S2

Table).

Other than the above-described 40 SNPs, we found suggestive statistical signals in the com-

bined meta-analysis (p-values�5.5x10-6, S3 Table) for other SNPs. The most significant SNP

Fig 1. Manhattan plot of the GWAS associations for mKCs in the discovery sample (FHS and Harvard

cohorts). The observed -log10 p-values (Y-axis) of the association between the SNPs and susceptibility for

mKC are shown. All SNP are represented by dots and displayed per chromosome (X-axis).

doi:10.1371/journal.pone.0169873.g001
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was rs4761496 that mapped to an intergenic region of chromosome 12 (p-value = 4.5x10-7).

Other SNPs with suggestive associations mapped to protein coding genes including CSMD1
(rs11777268, rs116045237, rs17393453) and PRF1 (rs35401316), both of which have an indi-

rect involvement with SCC [31, 32].

Since up to 80% of KCs are BCCs, we also looked at whether SNPs previously associated

with susceptibility for BCC conferred susceptibility to mKCs. Six of the 19 SNPs tested were

significantly associated with susceptibility for mKCs (Table 3). However, only rs1805007,

which that mapped to MC1R was significant (p-value = 2.8x10-4) after Bonferroni correction

(adjusted p-value�0.0026, 0.05/19). This gene is a well-known susceptibility locus for mela-

noma and KC. Other candidate loci identified in a recent GWAS for mBCC [14] were investi-

gated but none were significantly associated with mKCs after Bonferroni correction (data not

shown).

Discussion

In this two-stage GWAS of mKCs, we did not identify genome-wide significant associations

between SNPs and mKCs. Several SNPs with suggestive associations mapped to genes involved

in cancer pathology, but the findings need to be confirmed in larger samples. A candidate

SNP-based analysis of previous BCC/SCC variants showed significant associations between

mKCs and only one SNP (rs1805007) at MC1R, known to be associated with BCC, SCC and

melanoma was significant. This suggests that genetic susceptibility for mKCs may partly over-

lap with that for BCC, which is expected given that up to 80% of KC are BCCs.

The lack of replication of the suggestive associations in might be due to several factors.

First, phenotypic heterogeneity due to a differential ascertainment of KCs (pathology-con-

firmed versus self-reports) in the cohorts could have led to some phenotypic heterogeneity,

Table 2. Top SNPs identified in the discovery samples (Harvard cohorts and FHS) and p-values of the stage 2 in the RS and joint-meta-analysis

stages (Harvard cohorts, FHS and RS- all combined).

Stage1 (discovery phase) Stage 2

(replication)

Combined analysis

SNP id A1a A2b Freqc MAFd ORe e(95% CI)d P-value Directionf Z-scoreg P-value Z-score h P-value Directioni

rs7468390 C G 0.64 0.36 0.73 (0.64–0.82) 3.92 x10-7 — 1.459 0.145 -3.300 9.69x10-4 —+

3:171255288:ID D I 0.98 0.02 3.10 (1.97–4.88) 1.11 x10-6 ++ -0.898 0.369 3.551 3.84x10-4 ++-

rs58848026 T C 0.85 0.15 0.71 (0.62–0.82) 2.43x10-6 — 0.629 0.529 -3.664 2.48x10-4 —+

rs4749296 T G 0.36 0.64 0.78 (0.70–0.87) 2.83 x10-6 — -0.947 0.344 -4.358 1.31x10-5 —

rs6803721 T C 0.34 0.66 0.77 (0.69–0.86) 3.03 x10-6 — 1.538 0.124 -2.964 3.04x10-3 —+

rs4923076 A T 0.52 0.48 1.28 (1.15–1.41) 3.46 x10-6 ++ -0.431 0.666 3.602 3.15x10-4 ++-

rs10167336 T C 0.51 0.49 1.27 (1.15–1.41) 3.70 x10-6 ++ 0.286 0.775 3.894 9.88x10-5 +++

rs7799651 A A 0.45 0.45 0.73 (0.64–0.83) 4.37 x10-6 — 2.043 0.041 -2.553 0.011 —+

aA1: reference allele
bA2: other allele
cFrequency of A1
dMinor allele frequency of A2
eOdd ratios of A1. ORs and 95% confidence intervals (CI) were calculated from the weighted average of the effect size (regression coefficients and

standard error) from the inverse-variance meta-analysis
f Direction of the effect of A1 with +/- indicating a higher/lower disease risk for Harvard and FHS cohorts, respectively
gZ-scores from the replication
hZ-scores from the meta-analysis
i Direction of the effect of the A1 with +/- indicating a higher/lower disease risk for Harvard cohorts, FHS and RS, respectively.

doi:10.1371/journal.pone.0169873.t002
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although common variants for KCs have been replicated in the NHS, NHS II and HPFS

cohorts [13] as well as in RS [14]. In addition, the ratio BCC/SCC may be different for the

American and the European populations. In the RS, BCCs accounted for 82% of all mKCs. For

the USA cohorts, BCC/SCC ratios were not available, but a higher proportion of SCCs after

prior KCs in the USA were shown previously [4]. In addition, this study was underpowered to

detect variants with small to moderate effects (S2 Fig). Indeed, in the joint meta-analysis it was

shown that the eight variants with the most significant associations in the discovery samples

had the opposite direction in the RS, which led to significant heterogeneity (Table 2). This may

have caused a drop in the significance of the associations in the meta-analysis [30]. Interest-

ingly, we found other SNPs hits in the joint analysis that had the same direction in the three

cohorts, although the sample size was not large enough to reach genome-wide significance

(lowest p-value was 4.5x10-7). Most likely, the lack of replication is a combination of both phe-

notype heterogeneity and low power to detect variants with moderate to low effects in the RS.

Last but not least, one may argue that due to differences in the imputation quality thresholds

between the Harvard cohorts and the RS and FHS, we may have missed GWAS hits. However,

we did not expect a dramatic drop in power due to this reason because the Harvard cohorts,

Table 3. Association analysis of BCC-loci and mKC susceptibility from the combined analyses (Harvard cohorts, FHS and RS).

SNP id Gene A1a A2b Freqc MAFd Z-scoree P-value Directionf I2g ChiSqh

rs1126809 TYR A G 0.27 0.73 2.523 0.012 +++ 0 1.97 (0.37)

rs4911414 20q11.22 T G 0.35 0.65 0.892 0.373 +-+ 0 1.65 (0.44)

rs1015362 20q11.22 T C 0.28 0.72 -0.652 0.514 +— 52.9 4.25 (0.12)

rs7538876 PADI6 A G 0.38 0.62 -0.049 0.961 -++ 57.2 4.67 (0.10)

rs801114 1q42.13 T G 0.7 0.3 0.109 0.913 ++- 0 1.55 (0.46)

rs11170164 KRT5 T C 0.08 0.92 0.639 0.523 -++ 0 1.40 (0.50)

rs2151280 CDKN2B-AS1 A G 0.47 0.53 -1.94 0.052 — 0 1.02 (0.60)

rs157935 LINC-PINT T G 0.70 0.3 0.991 0.322 +++ 0 0.10 (0.95)

rs16891982 SLC45A2 C G 0.05 0.95 -1.427 0.154 — 0 0.79 (0.67)

rs401681 CLPTM1L T C 0.43 0.57 -2.748 6.00x10-3 — 53.6 4.31 (0.12)

rs12210050 EXOC2 T C 0.17 0.83 2.04 0.041 +++ 0 1.20 (0.55)

rs7335046 UBAC2 C G 0.87 0.13 1.569 0.117 +++ 0 0.45 (0.80)

rs1805007 MC1R T C 0.08 0.92 3.633 2.80x10-4 +++ 0 1.63 (0.44)

rs78378222 TP53 T G 0.99 0.01 -1.689 0.091 -?? 0 0.00 (1.00)

rs12203592 IRF4 T C 0.17 0.83 2.37 0.018 +?+ 0 0.19 (0.67)

rs12202284 EXOC2 A C 0.21 0.79 2.224 0.026 +?+ 0 0.00 (0.97)

rs8015138 GNG2 A C 0.49 0.51 -1.3 0.194 -++ 69.7 6.61 (0.04)

rs214782 TGM3 A G 0.81 0.19 -1.953 0.051 — 0 0.81 (0.67)

rs7006527 RGS22 A C 0.85 0.15 0.735 0.462 +++ 0 0.08 (0.96)

a A1:Reference allele
bA2:Other allele
c Frequency of A1
d Minor allele frequency of A2
e Z-scores from the meta-analysis
f Direction of the effect of A1 with +/- indicating a higher/lower disease risk for Harvard, FHS and RS cohorts, respectively
g I2 statistic of the amount of heterogeneity
h Cochran’s Q-test statistics for heterogeneity with degrees of freedom equal to number of studies -1

Significant p-value after Bonferroni correction (adjusted p-value� 0.0026) is highlighted in bold.

doi:10.1371/journal.pone.0169873.t003
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where a very stringent threshold was used to include SNPs for final meta-analysis (Rsq�0.95)

provided most of the markers (9,001,799 SNPS).

In the candidate SNP analysis nested within the GWAS, we found that MC1R, a gene previ-

ously associated with BCC was also associated with an increased risk for mKCs. This contrasts

with a recent study from the RS where no association between known BCC-SNPs and suscepti-

bility for mBCC was found [14]. Since the BCC cases were included in the replication dataset

of this study, this shows that the previous findings were most likely due to a lack of power of

the RS. Although only one of the 19 BCC-related SNPs was significant after Bonferoni correc-

tion, we found nominal associations for six of the previously identified BCC SNPs, suggesting

that larger sample sizes will be necessary to validate these associations.

As shown previously [33], most variants identified through GWAS are expected to have low

to moderate risks effects and therefore large consortia of participants with phenotype and

GWA-SNP data are needed. While this is feasible for traits such weight or blood pressure for

disease-related phenotypes this can be challenging. As mentioned above, all previous GWAS

studies of BCC or non-melanoma skin cancer published so far did not separate cases with mKCs

from those with sKC, and thus our series of mKCs cases could be considered as a rare phenotype.

With our findings one may argue that there are no common variants with strong effects contrib-

uting to the genetic susceptibility for mKCs, although we only tested eight million common SNPs

(frequencies higher than 2%). Whether the differential risk between patients with mKC and sKCs

is due to genes or mostly due to environmental factors, or an interaction of genes and environ-

mental factors remains to be elucidated. We did not test for SNP and environmental interactions

that may be relevant in explaining susceptibility to mKCs, because we did not have all environ-

mental risk factors assessed in all cohorts and the sample size was already small to detect SNP

main effects. Heritability studies could help to determine to what extent genetic risk factors

explain susceptibility for mKC. We found an heritability of 8% using GWAS data from the RS

(data not shown), but the power was low to have a significant estimate. Determining the heritabil-

ity for mKC as well as to identify individual susceptibility loci will require larger consortia of well

characterized cases and controls. In addition, rare variants were not evaluated. Although such

variants may not be clinically relevant to predict disease risk, they may reveal new pathways pre-

disposing to mKCs and new targets for drug discovery, as in the example of vismodegib, a drug

used to treat patients with NBCCS and sporadic, metastatic BCC [34].

Conclusion

We found suggestive associations of common variants that were not replicated. To identify

new loci and to confirm the suggestive associations found in this study, larger mKCs cohorts

will be required.
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